SWR \& Simple Antennas

Bob, W1IS
Bob, KC1DSQ

SWR - Hams Magic Number

What is it?

How does your Rig Respond?
How do you Measure it?

Bob W1IS \& Bob KC1DSQ

What is SWR?

Standing Wave Ratio

What happens at the Antenna? What happens on the Transmission Line?

- Standing Wave is Sum of Forward and Reflected Waves
- $\mathrm{SWR}=\mathrm{Vmax} / \mathrm{Vmin}=(100+50) /(100-50)=3: 1$
- Rigs Automatically Cut Power - SWR > 2:1
https://www.youtube.com/watch?v=kf6qk-Gnjag

Math to Isolate Forward and Reflected Power

- Voltage on the line is: $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{r}}$
- Current on the line is: $I_{L}=I_{f}-I_{r}$
- Convert I_{L} to a Voltage (for 50Ω Line)
- $V_{I L}=\left(I_{f}-I_{r}\right) 50=V_{f}-V_{r}$
- Adding $\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{IL}}=\left(\mathrm{V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{r}}\right)+\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{r}}\right)=2 \mathrm{~V}_{\mathrm{f}} \sim$ Forward Power
- Subtracting $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IL}}=\left(\mathrm{V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{r}}\right)-\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{r}}\right)=2 \mathrm{~V}_{\mathrm{r}} \sim$ Reflected Power
- Now we need a circuit that does the Math

Schematic - SWR Forward \& Reflected Power Meter

Note: Each Xfmr n:1, $Z_{o}=50$ Ohms

SWR / Power Meter

Simple Wire Antennas

Bob Glorioso W1IS
 Bob Rose KC1DSQ

Agenda

- Antenna Builders Tool Box
- The Dipole
- 6 Meter Dipole for New and Old Techs
- Verticals (Incl. 2M \& 70cm J-Pole)
- Inverted L
- 40 m Vertical
- 40 m C-Pole
- Portable 40 m Wire Beam

Antenna Builders Tool Kit

Antenna Analyzer
Wire -
\#14 THHN
Davis RF \#FW14BK
Wire Cutter \& Stripper Insulators
Coax \& Connectors Crimping Tool

Antenna Launcher:
Bow \& Arrow Sling Shot
550 Parachute Cord
100’ Measuring Tape
Quality Black Electrical Tape
Assorted Hand Tools
Screwdrivers, Pliers, Soldering Iron, etc

The Humble Dipole

Why a Choke Balun?-Coax's $3^{\text {rd }}$ Conductor

- Skin Effect - RF current flows on outside of all conductors
- "Thus, Outside of Shield Is the Third Conductor
- Unbalanced Antenna Current Travels to Rig on Outside of Coax, I_{4}
- Outside Current Radiates \& Changes Antenna Pattern
- RF Feedback in Shack Causes Problems with
 everything
- Choke Balun at Feed Point Suppresses Current, I_{4},
- Making the Antenna System Balanced

Choke Balun

OCFMasters.com

Dipole's Voltage \& Current Distribution

- Peak Current, Minimum Voltage at Middle
- High Voltage \& Zero Current at ends
- High Voltage Causes Current Flows Ends to Middle \& Surrounding Objects
- Danger - HIGH VOLTAGE

Dipole L = 468/F : 1/4Vertical L= 234/F

- Approximation that Gets the Length in the Ball Park
- Add a Little for Wrap, Tying Measuring Error Flexibility!
- At Deployment Height, Measure Min SWR Frequency
- New_Length $=$ Current_Length x (Current_Freq / Target_Freq)
- Adjust by Wrapping the Excess and Trying Again
- At Correct Length, Trim the Excess or Tape in Place

Simple 6M Dipole

Balun - 3 Turns RG-8x, 3" Diameter - Wrapped in Tape

Covers the Full Width of the Band

- Lengthen for Lower SWR on CW, SSB, or Digital
- Shorten for Lower SWR on FM

SWR $52000 \pm 2000 \mathrm{kHz}$

Coupling to Nearby Objects and Ground Causes Imbalance \& End Effect

- Dipole in Free Space is Balanced
- Dipole Near Objects is Not Balanced
- Most Current Comes from Ends, High V

- Current From Ends is called END EFFECT
- Makes Antenna Look Electrically Longer \& Lowers Resonant Frequency ~ 2\%
- Current Same Direction Both Wires to Shack \& Rig, etc. Common Mode Current, CMC

- Can you now explain why you should tune at final height?

Resonant Frequency Changes with Height

- Coupling and Current Flow Increases Closer to Ground
- Antenna Becomes Electrically Longer than its Physical Length.
- Increased Coupling Lowers Resonant Frequency
- Deployment Height of Half Wavelength Works Well for a Number of Reasons

Height Ft	λ	Minimum SWR Frequency MHz
20	0.15	7.06
30	0.23	7.07
40	0.29	7.12
50	0.36	7.18
60	0.46	7.20

- Tune your antenna at height

Elevation Pattern Changes with Height

- 0.3λ or Lower is a Good NVIS Radiator $\sim 78 \mathrm{ft}$ on 80 M
- Going Above 0.5λ Lowers Takeoff Angle, Radiates More Vertical Power

10 m Stacked Dipoles

- Increasing Dipole Height is Usually Desirable.
- Don't be so sure!
- Eventually, a Vertical Lobe Develops

- Takes Energy Away From Useful Directions
- A Stack of 2 Dipoles Suppresses Lobe at all Heights.

10M Stacked Dipoles

Stacked Dipole Details

- Optimal Spacing is 0.6-.75 Wavelengths
- Impedance of Dipoles Transformed to 100 Ohms by $1 / 4$ Wavelength 75 Ohm Cable - Dipoles Wired in Parallel with Tee is 50 Ohms
- Problem: 2 runs of $1 / 4$ wavelength Do not Span 0.6 Wavelengths
- Make the Top Coax 3/4 Wavelength introduces 180 Degree Phase Shift
- Reversing the Coax Connection at One Dipole fixes 180 Degree Shift
- If Center Conductor Goes to the Right Leg of Top Dipole, Center Conductor of Bottom Dipole must Go to Left Leg

Gain and Takeoff Angle at Different Heights 1 Dipole vs. Stack of 2

- Very Low Takeoff Angles 1-2 2λ Heights
- Up to 3.46 dB Gain Increase @55 ft
- Inexpensive \& fun virtual amplifier!

Height ft	Type	Gain DB@X degrees T/O
40	1 dipole	$8.15 @ 12$
	2 dipoles	$9.94 @ 15$
45	1 dipole	$7.45 @ 11$
	2 dipoles	$11.4 @ 11$
50	1 dipole	$7.5 @ 10$
	2 dipoles	$11.6 @ 9$
55	1 dipole	$8.14 @ 9$
	2 dipoles	$11.6 @ 9$

Tuning

- Launch the Top Dipole Alone Using a 100 Ohm Resistor in Tee - Proxy for Lower Dipole
- Adjust Length for min SWR Where You Want It
- Adjust the Lower Dipole to the Same Length
- Add RG-8X fee, Launch Both Dipoles, Anchor the Bottom Dipole, and Measure SWR
- Have Fun at Higher Radiated Power

SWR $28850 \pm 850 \mathrm{kHz}$

6 Meter Stacked Dipoles

Height ft.	$\begin{gathered} \# \\ \text { Dipoles } \end{gathered}$	λ	Gsin dBi@ X degrees
20	1	1.0	8.06@13
	2	1.0	10.07@15
30	1	1.5	8.13@9
	2	1.5	11.5@10
40	1	2.0	8.12@7
	2	2.0	11.23@10
50	1	2.6	8.0@5
	2	2.6	11.87@5
60	1	3.0	8.01@4
	2	3.0	12.34@5

Simple 2 M Vertical

- Buss Bar or \#12-14 Solid House Wire
- Loop Top - Hang with Tie Wrap
- Loop Radial Ends for Safety

2M Quarter Wave Vertical

SO-239

2M \& 70 cm J-Pole (Vertical End Fed)

HF - Ground Mounted Vertical

- A Quarter Wavelength Radiator Ground is Mirror to Create the Second Half of Dipole
- Ground has Poor Conductivity
- Radials Reduce Ground Resistance \& Loss
- Radials Untuned, Any Length.
- More radials always better - lowers loss
- Impedance with perfect ground $=35$ ohms

Raise Radials Vertical

One or Two Radials
Radials >10ft off ground minimize ground losses
Radials are "tuned"

- Dipole wires at 90 degrees
- Radiation pattern slightly directional

- Radials 180 degrees - omni - pattern

Base For a Vertical

- Provide Strain Relief for Vertical Wire
- Copper Clad Board Attach Point for Antenna \& Radials
- Use Stainless Steel Hardware
- Base
- Stake in Ground
- Cantilever off House or Tree

HF Inverted L

- L - Element is Half Wavelength Bent to fit Space
- Compact Footprint
- Vertical Run is as high as trees/supports allow.
- Horizontal Run Provides Remainder for $1 / 4 \lambda$.
- Low Takeoff Angle
- Good for DX on Low Bands
- Needs to be Tuned
- Vertically Polarized - Why?
- More Radials Always Better
- Radial Length Not Critical

OCFMasters.com

Vertical Antenna Performance

- Gain 4-6 dB Lower Than a Horizontal Dipole
- More Radials Lowers Ground Losses
- Azimuth Pattern is Omnidirectional
- Takeoff Angle Much Lower Than Dipole
- Low Takeoff Angle is Good for DX
- Impedance is Typically 35 Ohms

C-Pole Horizontal

- A C-Pole is half wavelength dipole bent into a "C" Shape
- Compromise Antenna fits Small Space
- 40 m version is $12 \times 24 \mathrm{ft}$, vs. 66 ft Full Dipole
- Center Impedance low, feed off-center to 50 Ohm point
- Don't Forget the UNUN/Choke/Balun.
- Horizontal - Gain about 4.4 dBi at 30 Ft with a high takeoff angle
- At 25 Degrees Takeoff, Gain is about -1.0 dBi

C-Pole Layout Uses Wood Spreaders

- $\mathrm{A}=24 \mathrm{Ft}, \mathrm{B}=12 \mathrm{Ft}, \mathrm{C}=7.5 \mathrm{Ft}, \mathrm{D}=10.17 \mathrm{Ft}$
- Off Center Rope Harness Compensates for Weight Imbalance, 1:1 Balun

Dimensions are Flexible

- Total Length of Radiator is About 66 Ft
- Widths Between 10 Ft and 14 Ft Will Produce a Usable Antennas
- The Gap Should be > 6 Ft.
- A Small Gap Reduces Bandwidth
- Position of Feedpoint Determines the Impedance
- Balun is Required (Off Center Feed is Unbalanced)

40 M Portable Wire Beam

- Primarily Motivated by Field Day
- Obviously Not Rotatable
- Here in the Northeast, Point WSW - Cover Most of the Country
- Point the Other Way \& Cover Europe
- Flip Direction with Armstrong Rotator - Pull the Feedline!

40 m Beam Configuration

OCFMasters.com

40 m Beam Design

- Driver/Director Spaced 10 ft Apart
- 10 ft Spreaders fit in an SUV
- Rope Harness Supported Off Center to Level the Antenna
- Dimensions Shown are for SSB Portion of the Band
- Gain is 8.4 dBi and Front/Back is 8.5 dB at 7.2 MHz
- For CW, Driver is 68' 9" Director is 64' 4"
- Used Successfully in Field Day for Several Years

40m Beam Particulars

- Balun is Implemented with Choke - 5 Turns RG-8X Wrapped \& Taped in 5" Coil at Feedpoint
- Provides 10 dB of Isolation
- Spreaders are 10' Dowels 1.25" in Diameter
- Wire is \#14 THHN or \#14 Flexweave from Davis RF

Simple 10M Vertical Loop

- Wood Spreaders
- Balun - 3 T RG-8x 4" D taped
- Hang From Tree Limb ~20' up
- Max Gain Perpendicular to Plane
- ~ 1dB Gain over Dipole
- Scalable to other Bands

Dimensions and Performance

Band	Takeoff Angle, Degrees @ 20 ft To Bottom	Gain, dBi @ 20 ft	Dimensions, Feet
20 m	27	7.37	$13.6^{\prime} \times 22.25^{\prime}$
17 m	23	7.03	$9.3^{\prime \prime} \times 18.83^{\prime}$
15 m	21	7.88	$7.88^{\prime} \times 16.05^{\prime}$
10 m	18	7.99	$6^{\prime} \times 11.8^{\prime}$
6 m	11	8.18	$3.4^{\prime} \times 6.6^{\prime}$

10 m SWR and Pattern

- Other Bands are Similar

THANK YOU

73 DE

Bob, W1IS
\&
Bob, KC1DSQ

(Bob)² Latest Publications

- "A 70-cm "Kitchen Array" CQ Magazine, August 2023, pp77-81
- "Wire Antennas 160 meters to 70 cm , Concepts, Construction and On the Air," available at OCFMasters.com, Ham Radio Outlet Salem, Amazon

