Critical Home Power

Economical Manual start Whole House AC Power For Amateurs

Hugh Maguire N1QGE

Goal of presentation

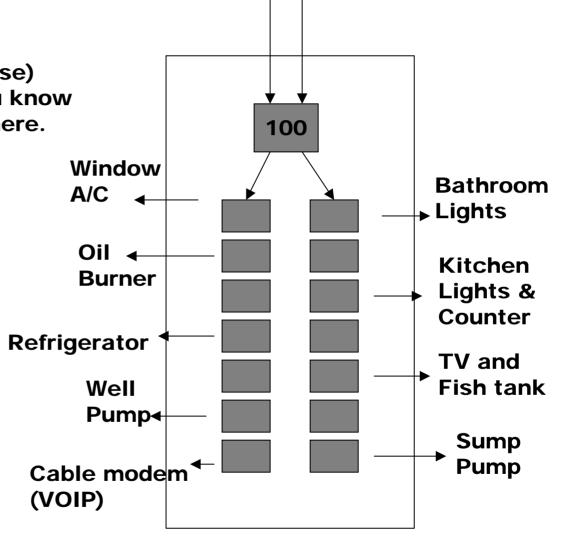
Show how one amateur supplied all the critical loads in the home with minimal temporary wiring A pre-wired 240v system ... \$\$ less than the expense of a whole house installation

This system ran for 5.5 days - 24 hours a day during the December 2008 ice storm

"Critical" loads defined as all those circuits that need to Be activated to allow family to function in the house During a prolonged power failure. (heating system)(refrigerator)

"Necessary" loads are defined as those that allow family life To continue w/o too much sacrifice [not just the ham shack] More than one or two lights + (TV set)(garage door opener) (fish tank?)

First things first

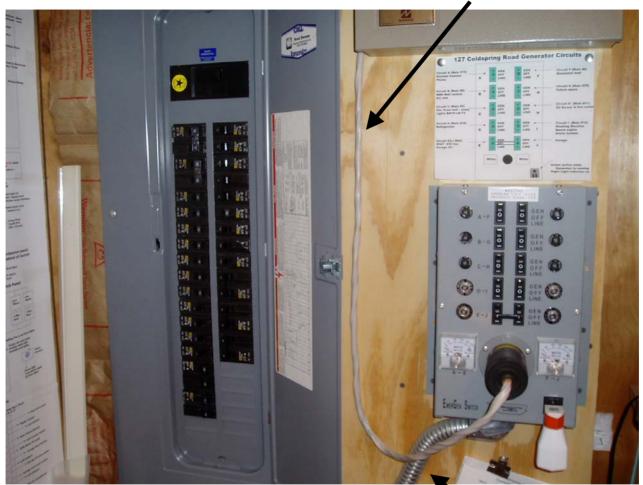

Open your home's breaker (fuse)
Panel and make sure that you know
What loads are connected where.

Label all circuits

Should be done even if You are not considering A generator

It usually is not realistic to power all the circuits So pick the needed ones ...

Be sure to identify those Circuits that you must Have to function in the house (In winter or summer)


Critical Loads

- Furnace w/pumps and motors and blowers etc.
- Refrigerator (turn off mullion heaters)
- Freezer
- Well Pump
- Sump Pump
- Ham shack Radios + heat and light
- Window A/C unit (5000-6000 BTUH)
 - These have very high starting loads
- Fish tank heater
- Your family's needs may be different ...

Necessary loads - you may want to time share but connecting and re-connecting gets old

- Light circuits, several kitchen and bath especially
- One wall outlet in kitchen for toaster or coffee pot
 - Assume 1500 watts each (time share)
- "Family" TV circuit
- Cable or Satellite receiver
- Wireless phone circuit
- DSL modem circuit (hard wired phone)
- Cable VOIP equipment
- Garage door opener
- Computer (high quality power more later)
- Portable electric heat (usually 1500 watts each)
- Your family probably has a unique use ...

10 Gage 4 wire From house connector

10 circuits (Choose at Time of Install)

-Line

-Off

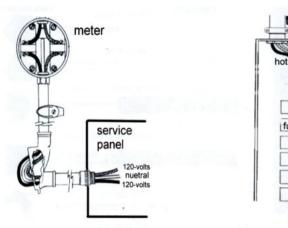
-Gen

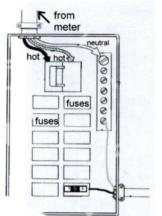
The author's interior power distribution 225A breaker panel with 10 Ckt. EmerGenSwitch panel

Panel Connection To Breakers

House External 240 volt input connector

75' 4 wire 10 gage SOJ (\$\$) cable

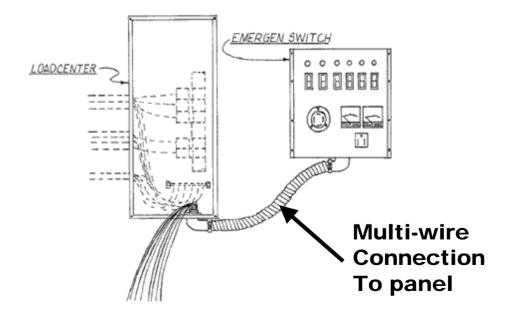

My Generator installation - No modifications to generator


Cost Breakdown (estimate)

Provide for all house critical and some necessary loads with A pre-wired system that allows for mostly normal lifestyle

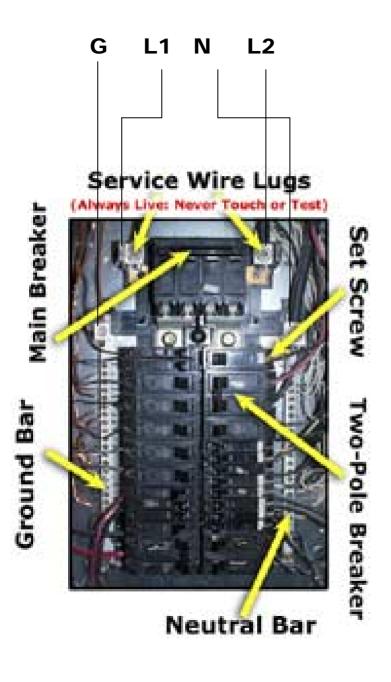
Generator - manual start - 4-	5Kw 500	- 800
EmerGen & connect boxes	120	- 350
Electrician install labor **	200	- 300
75' - 10GA - cable & connect	ors 60	- 120
Dedicated extension cords	50	- 100
Misc fuel cans etc.	50	- 75
	Total 950	- 1600

^{**} Electrician necessary to install EmerGen switch box
Other items can probably be done by capable homeowner



Connecting the Breaker Panel to the EmerGen

6 Circuit 240 volt (\$120) unit shown



10 Circuit

EmerGenSwitch

\$225.00

Note the two 240 volt Option ties

Know the existing wiring Plan for the house

"R" & "L" sides of panel

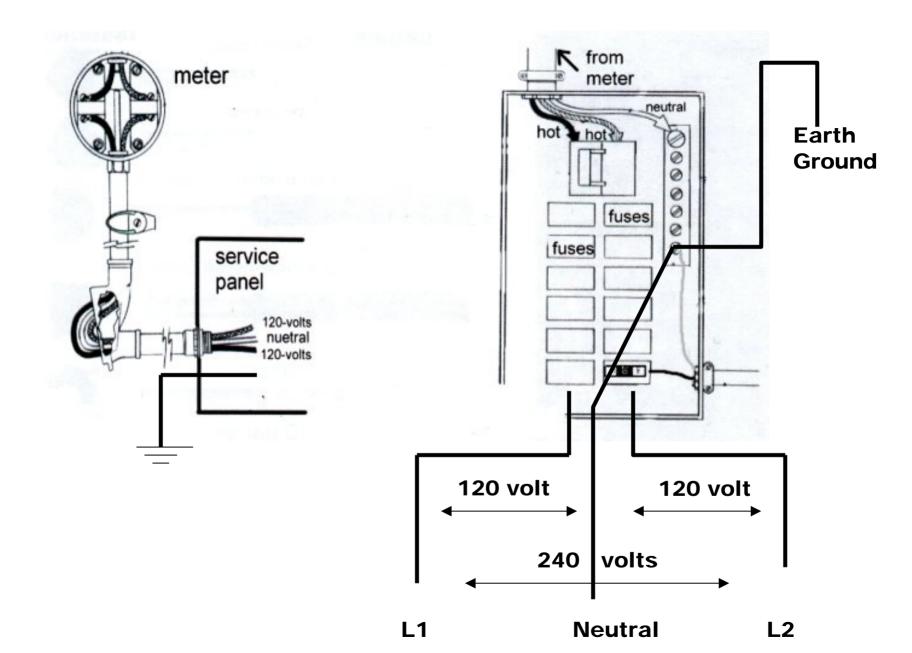
Mostly 120 volt loads

240 volt generator Feeds L1 & L2 loads Connect to both lines As equally as possible Selecting a Generator - 3600RPM gasoline ones are most affordable

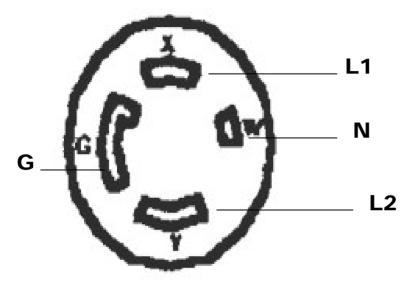
Size to start the biggest reactive load (motor) I have found the most Demanding starting load to be a 6-8000 KBTU window air conditioner

A 4000 Watt average / 5000 Watt peak does the trick

Too small and a big load will create quite annoying power drops at the least - or - cripple the system at worst.


Too big and you simply waste fuel since the average load is often quite a bit less than 4000watts. (unless you are electric heating)

Quiet - economical - reliable - 12+ hour (overnight) run on fuel load Means a high quality unit is needed (low oil shutoff) (idle down circuit)


Figure-out where it will be stored - get wheels - heavy about 160#

Plan where it will be run during use - more on noise later - heavy duty (10Ga minimum) extension cord(s)

A 240 volt 4 wire connection is needed because your house wiring Splits all the 120 volt circuits between 2 inputs.

NEMA type receptacles L14-30R & L14-30P

Female Receptacle

30 amp. 125/250 volt
3-Pole
4-Wire Grounding
2 hp rating.
7500 watt generator plug

Note: these connectors can be Quite expensive (\$15-\$20 each)

Male Plug

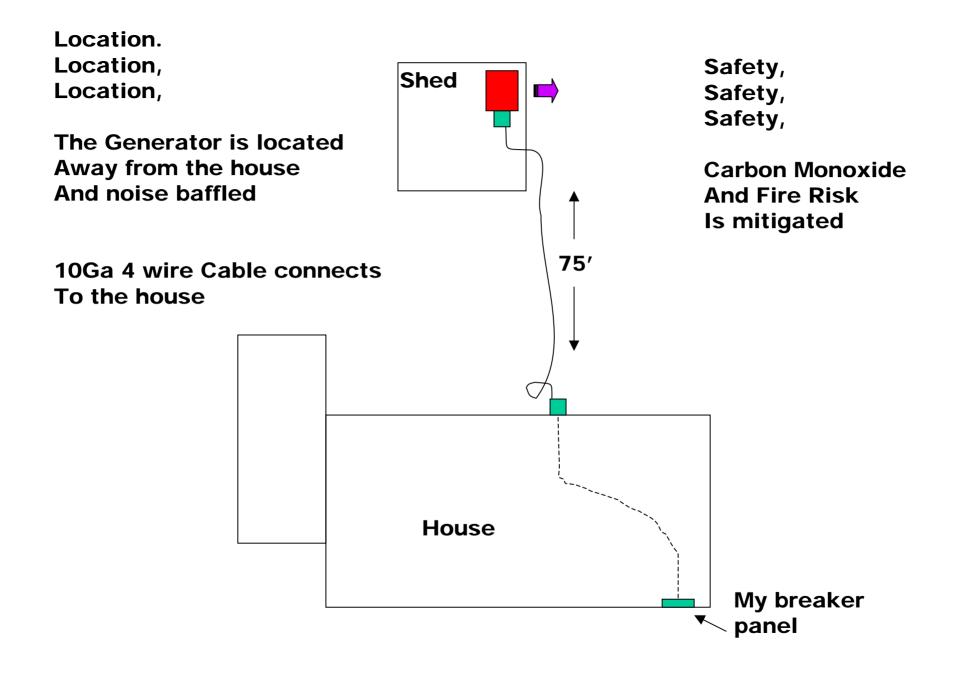
HBL2711

Now .. How well do you get along with your neighbors?

Your generator is liable to be running for some time & overnight Especially in the winter when you need to keep furnace running You want to minimize the noise to both yourself and your Neighbor (you will never eliminate it)

Pick a spot outside for safety, away from the house if possible Most generators are weatherproof & made to run outdoors ...

A tool shed is a good spot - store the generator and its fuel and Maintain it and run it in the same spot (leave the door open) Regular maintenance during a multi-day outage is necessary


... this what I chose to do

My Generator installation – inside a tool shed – exhaust is Vented outdoors

Shed outside wall - Cable port & Exhaust Port

External 240 volt input connector to house

75' 4 wire 10 gage cable

Inside

EmerGen panel is made To connect directly to Generator - ok - if located In garage etc.

Generator Key Features

4,000avg 5000peak watts Manual start OHV engine Idle-down

Low oil shutdown Fuel gauge

Quiet Operation

4 gallon fuel tank 12-15 hour run time

Lifting Handle

240 volt 4 wire outlet

Wheels! (about 160#)

Safety First ... Frame of Generator Ground to earth

Maintenance & Testing & Accessories

Good maintenance will pay dividends in reliability ...

In general keep a small amount of fuel on the tank and run It every 2 months or so. Use the fuel shutoff and run the fuel Out of the carburetor.

Do a complete all loads on test periodically - let furnace, pumps and refrigerators cycle.

Don't forget fuel storage - modern gasoline does not "keep" well (keeps better in the winter)

Don't keep it much more than 6 months - use stabilizer

NOTE: have a siphon on hand to get fuel from your car(s) if needed

Emergency power and Computers

Emergency generators can easily provide recharge power For laptops – don't forget that you will need to power your Cable / DSL modem

Emergency generators can provide power for a home Office / desktop computer ... but ...

Care must be given to generator stability, voltage, and Frequency. Generator must be sufficiently sized so as to Not dip voltage dramatically during reactive load starts. (If you are serious about computer need get dedicated Generator for that application)

A UPS can remain and is a help during times when reactive (motor) loads start and line voltage drops briefly - know the Low voltage trip points.

Conclusion

A solution that uses portable generating equipment Without lots of extension cords

Requires a 4-5Kw - 240vac - generator

Does require pre-planning

Reasonable but measurable cost involved

Allows family to continue most of daily lifestyle

Could make your neighbor jealous (save one long Extension cord to send him a little)